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Critical end point behavior in a binary fluid mixture

Nigel B. Wilding*
Institut für Physik, Johannes Gutenberg Universita¨t, Staudinger Weg 7, D-55 099 Mainz, Germany

~Received 10 December 1996!

We consider the liquid-gas phase boundary in a binary fluid mixture near its critical end point. Using general
scaling arguments, we show that the diameter of the liquid-gas coexistence curve exhibits singular behavior as
the critical end point is approached. This prediction is tested by means of extensive Monte Carlo simulations
of a symmetrical Lennard-Jones binary mixture within the grand canonical ensemble. The simulation results
show clear evidence for the proposed singularity, as well as confirming a previously predicted singularity in the
coexistence chemical potential@M. E. Fisher and P. J. Upton, Phys. Rev. Lett.65, 2402~1990!#. The results
suggest that the observed singularities, particularly that in the coexistence diameter, should also be detectable
experimentally.@S1063-651X~97!04706-5#

PACS number~s!: 64.70.Ja, 64.70.Fx, 64.60.Fr, 05.70.Jk
e
rd

a
na
so
vi
,

oin
ne

r o
a
er

o
he

t
f
t

e

s
a

sed

mic
hav-
in-

li-
ical
re
ical
o-
dels
ec-
to
ave
pli-
e
nce
the

T
Z

ex-
I. INTRODUCTION

A critical end point occurs when a line of second-ord
phase transitions intersects and is truncated by a first-o
phase boundary, beyond which a newnoncritical phase is
formed. Critical end points are common features in the ph
diagrams of a many multicomponent systems such as bi
fluid mixtures, binary alloys, and liquid crystals. They al
occur under certain circumstances in pure systems ha
additional internal degrees of freedom such as superfluids
well as certain ferromagnets and ferroelectrics.

Perhaps the simplest system to exhibit a critical end p
is a binary fluid mixture. Here the phase diagram is span
by three thermodynamic fields: the temperatureT, a chemi-
cal potentialm, and an ordering fieldh coupling to the con-
centration difference of the two particle species. A numbe
different phase diagram topologies are possible for bin
fluids depending on the microscopic interaction paramet
as systematically classified by Konynenburg and Scott@1#.
The particular case on which we shall focus in this work is
type II in their classification scheme and is depicted sc
matically in Fig. 1 for the subspaceh50. Within this sub-
space, two fluid phasesb andg, each rich in one of the two
particle species, coexist with one another. By tuningT and
m, however, one finds a criticall line Tc(m), where both
phases merge into a single disorderedbg phase. The point a
which the l line Tc(m) intersects the first-order line o
liquid-gas transitionsms(T) marks the critical end poin
(Te ,me). For T,Te , the phase boundaryms(T) constitutes
a triple line along which the fluid phasesb and g coexist
with the gas phasea, while for T.Te , ms(T) defines the
region where thebg anda phases coexist. Precisely at th
critical end point the critical mixture ofb and g phases
coexists with the gas phase. Since the gas phase doe
participate in the criticality, it is commonly referred to as
‘‘spectator’’ phase.

*Present address: Department of Physics and Astronomy,
University of Edinburgh, West Mains Road, Edinburgh EH9 3J
United Kingdom.
551063-651X/97/55~6!/6624~8!/$10.00
r
er

se
ry

ng
as

t
d

f
ry
s,

f
-

not

Interest in critical end points has recently been arou
following theoretical work by Fisher and co-workers@2#. On
the basis of phenomenological scaling and thermodyna
arguments, these authors argued that the nonanalytic be
ior at the critical end point engenders a free-energy-like s
gularity in the first-order ~spectator! phase boundary
ms(T). The nature of this singularity, specifically its amp
tude ratio, was related to the universal features of the crit
line. Additionally, different universal amplitude ratios we
proposed for the noncritical surface tensions near the crit
end point@3#. These predictions were subsequently corrob
rated by analytical calculations on extended spherical mo
@4,5#, as well as a Landau theory study of a model ferroel
tric @6#. To date, however, experimental results pertaining
critical end points are scarce and those that do exist h
focused on the interfacial properties and the surface am
tude ratios@7,8#. To the best of our knowledge there hav
been no reported attempts to study the bulk coexiste
properties and the matter of the predicted singularity in

he
,

FIG. 1. Schematic phase diagram of a binary fluid in the co
istence surfaceh50. The broken linems(T) is the first-order
liquid-gas phase boundary between the fluid and gas phasea. The
full line is the critical line of second-order transitionsTl(m) sepa-
rating the demixed phasesb1g from the mixed phasebg. The two
lines intersect at the critical end point.
6624 © 1997 The American Physical Society
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55 6625CRITICAL END POINT BEHAVIOR IN A BINARY . . .
spectator phase boundary. There is a similar dearth of si
lation work on the subject, and we know of no detailed n
merical studies of critical end point behavior, in either latti
or continuum models.

In this paper we address the issue of the nature of
spectator phase boundary near a critical end point by me
of computer simulation of a continuum binary fluid mod
@9#. Our paper is organized as follows. In Sec. II we brie
review the principal features of the scaling arguments
Fisher and co-workers and show that in addition to the p
viously predicted singularity inms(T), they also imply sin-
gular behavior in thediameterof the liquid-gas coexistenc
curve at the critical end point. In Sec. III we detail extens
Monte Carlo simulations of a symmetrical~Lennard-Jones!
binary fluid mixture. We map the liquid-vapor coexisten
curve and thel line of the model by applying finite-size
scaling analyses to the probability distribution functions
appropriate observables. The results provide remarka
clear signatures of divergences in the appropriate temp
ture derivatives of the coexistence diameter and the ph
boundary chemical potential, thus corroborating the theo
ical predictions. Finally, in Sec. IV we detail our conclu
sions.

II. THE LIQUID-GAS COEXISTENCE CURVE

A. The coexistence chemical potential

In this subsection we briefly review the scaling argume
of Fisher and Barbosa@2# concerning the singularity in the
spectator phase boundary at the critical end point. In so
ing, we shall continue to employ the language of the bin
fluid mixture, although the arguments themselves are no
stricted to this case.

Within the grand canonical framework, liquid-gas coe
istence is prescribed by the equality of the Gibbs free ene
G52kBTlnZ in the respective phases, i.e.,

Gg„ms~T!,T,h…5Gl„ms~T!,T,h…. ~2.1!

Since the gas spectator phase is necessarily noncritica
free energy is analytic at the end point and can thus be
panded as

Gg~m,T,h!5Ge1G1
gDm1G2

gt1G3
gh1G4

gDm21•••,
~2.2!

wheret[T2Te andDm[m2me , with Dm,0.
The liquid phase, on the other hand, is critical and the

fore contains both an analytic~background! and asingular
contribution to the free energy

Gl~m,T,h!5G0~m,T,h!2utu22aG6~ ĥutu2D!, ~2.3!

whereG0 is the analytic part, whileG6(y) is a universal
scaling function that is a function of the relevant scali
fields t(T,m,h)5T2Tc(m) and ĥ(T,m,h)'h that measure
deviations from thel line.G6(y) must satisfy matching con
ditions asy→6`, and the quantitiesa andD are, respec-
tively, the specific heat and gap exponents associated
thel line.

To linear order the scaling fields may be expanded as
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t~T,m,h!5t1a1h1a2Dm, ~2.4a!

ĥ~T,m,h!5h1b1t1b2Dm, ~2.4b!

where theai andbi are nonuniversal ‘‘field mixing’’ param-
eters@10,11#, some of which have geometrical significan
within the phase diagram. In particular, sincet50 specifies
Tc(m), one has at the critical end point

a252
dTc
dm

, ~2.5!

representing the gradient of thel line at the critical end
point.

The critical free energy@Eq. ~2.3!# can also be expande
in Dm, t, andh. Recalling Eq.~2.2!, invoking Eq.~2.1!, and
solving form(T) then yields@2#

ms~T!2mo~T!'2X6utu22a2Y6utubuhu2
1

2
Z6utu2gh2,

~2.6!

valid asT→Te6, h→0. HereX6 ,Y6 ,Z6 are critical am-
plitudes anda,b,g are the usual critical exponents chara
terizing the l line. Corrections to scaling have been n
glected and the background term has the expansion

mo~T!5me1g1t1g2h1••• . ~2.7!

If we restrict out attention to the coexistence surfaceh50
and assumea.0, Eq. ~2.6! implies a specific heat-like di-
vergence in thecurvatureof the spectator phase boundary

d2ms

dT2
'2X̂6utu2a, ~2.8!

where the amplitude ratioX̂1 /X̂2 is expected to be universa
@2#.

B. The coexistence diameter

Let us now examine the behavior of the coexistence p
ticle number density in the vicinity of the critical end poin
Specifically, we shall focus on the coexistence diamete
the regionĥ50, defined by

rd~T![
1

2
@rg„ms~T!…1r l„ms~T!…#. ~2.9!

The particle density is obtainable from the Gibbs potentia

r52
1

VS ]G

]m D
T,h

~2.10!

so that

rd~T!52
1

VS ]Gs~ms~T!,T!

]m D
T

~2.11!

with
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Gs„ms~T!,T…5@Gg„ms~T!,T…1Gl„ms~T!,T…#/2.
~2.12!

Appealing to Eqs. ~2.2! and ~2.3! and noting that
b522a2D then yields, for the singular behavior

rd~T!5U6ut„T,ms~T!…ub1V6ut„T,ms~T!…u12a

1~ terms analytic atTe! ~2.13!

as t→0. Here the nonuniversal critical amplitudes take t
form

U65b2G68 ~0!, ~2.14a!

V65a2~22a!G6~0!, ~2.14b!

with G68 (z)5dG6 /dz.
Now, along the liquid-gas coexistence curve, one h

from Eq. ~2.4a!,

ut„T,ms~T!…u5ut1a2„ms~T!2me…u. ~2.15!

Recalling Eqs.~2.6! and ~2.7! ~and settingh50), one then
finds

ut„T,ms~T!…u5utu@11a2g11O~ utu12a!#. ~2.16!

Thus, to leading order one can write

rd~T!5Ũ6utub1Ṽ6utu12a1~ terms analytic atTe!,
~2.17!

where Ũ65(11a2g1)
bU6 and Ṽ65(11a2g1)

12aV6 .
We note that this expression is of the same form as the
gularity in the overall density on thel line @10#.

A special case of Eq.~2.17!, relevant to the present work
is that for a symmetrical fluid having energetic invarian
underh→2h. In this case one finds on symmetry groun
that the field mixing parametersb15b250 and hence from
Eq. ~2.14a!

rd~T!5Ṽ6utu12a1~ terms analytic atTe!, ~2.18!

which implies a divergent diameter derivative

drd~T!

dT
'V̂6utu2a, ~2.19!

whereV̂65(12a)Ṽ6 . Since this divergence occurs in th
first derivative of the observablerd(T), it is in principle
more readily visible than that in the second derivative
ms(T); cf. Eq. ~2.8!. As we shall now show, however, clea
signatures of both divergences are readily demonstrable
Monte Carlo simulation.

III. MONTE CARLO SIMULATIONS

A. Model and algorithmic considerations

The simulations described here were performed fo
symmetrical binary fluid model using a Metropolis algorith
within the grand canonical ensemble@12#. The fluid is as-
e

s,

n-

f

by

a

sumed to be contained in volumeV5L3 with periodic
boundary conditions. The grand canonical partition funct
takes the form

ZL5 (
N150

`

(
N250

`

)
i51

N H E drW i J e[mN2F~$rW%!1h~N12N2!] ,

~3.1!

whereF5( i, jf(r i j ) is the total configurational energy,m
is the chemical potential, andh is the ordering field~all in
units ofkBT). N5N11N2 is the total number of particles o
types 1 and 2.

The interaction potential between particlesi and j was
assigned the familiar Lennard-Jones~LJ! form

f~r i j !54emn@~s/r i j !
122~s/r i j !

6#, ~3.2!

where s is a parameter that serves to set the interact
range, whileemn measures the well depth for interaction
between particles of typesm andn. In common with most
other simulations of Lennard-Jones systems, the poten
was truncated at a cutoff radiusr c52.5s ~irrespective of the
species of the interacting particles! and left unshifted. To
simplify the task of locating interacting particles, a cell d
composition scheme was employed in which the total sys
volume was partitioned into cubic cells of sider c . Interac-
tions emanating from a specific particle then extend only
far as the 26 neighboring cells.

An Ising-like symmetry was imposed on the model
choosinge115e225e.0. This choice endows the syste
with energetic invariance underh→2h, thereby ensuring
that the critical end point lies in the surfaceh50. We shall
accordingly restrict our attention henceforth to this regim
An additional parametere125d was used to control interac
tions between unlike particles. The phase diagram of
model in the surfaceh50 is then uniquely parametrized b
the ratiod/e. Physically, the role of this ratio in determinin
the form of the phase diagram can be understood as follo
For d/e&1, the energy penalty associated with contacts
tween unlike particles is small and hence there is little inc
tive for phase separation unless the temperature is very
and the density very high. One therefore expects a ph
diagram having a critical end point temperatureTe!Tc

lg and
densityre@rc

lg , whereTc
lg andrc

lg are the liquid-gas critical
temperature and density, respectively. Choosing a sma
value of d/e, however, moves the end point towards t
liquid-gas critical point, into which it merges for sufficientl
small d/e, forming a tricritical point @13#. Empirically, we
find that for d/e50.6, there is a tricritical point, while for
d/e50.75 there is a critical end point havingre'2.3rc

lg .
The location of the critical end point for larger values
d/e could not be reliably determined since its density
above that at which the grand canonical particle insert
algorithm ~see below! is operable. In this work, all simula
tions were performed withd/e50.7, which yields critical
end point parametersTe'0.93Tc

lg , re'1.75rc
lg . This tem-

perature is sufficiently small compared toTc
lg that critical

density fluctuations do not obscure the end point behav
while at the same timere is not so large as to unduely hinde
particle insertions.
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55 6627CRITICAL END POINT BEHAVIOR IN A BINARY . . .
In order to sample ergodically the phase space of
model, two sorts of Monte Carlo action are necessary.
first is a particle transfer step in which one attempts eithe
insert a particle at a randomly chosen position or, alter
tively, to delete a randomly chosen existing particle. Can
date particles for insertion are assigned a species type (
2) with equal probability. The second sort of action is
identity swap, in which one chooses an existing particle
random and attempts to change its identity (1→2 or
2→1). Combined use of these operations samples the g
canonical ensemble in which the particle densityr5N/V,
energy densityu5F/V, and number difference densit
m5(N12N2)/V all fluctuate.

In accordance with convention, we shall employ dime
sionless units to express our data:

r̃ 5rs3, m̃5ms3, ũ5us3, ~3.3!

T̃5kBT/e. ~3.4!

We also note for future reference that our algorithm utiliz
not the true chemical potentialm, but an effective chemica
potentialm̃ to which the true chemical potential is related

m5m̃1m02 ln~N/L3!, ~3.5!

where m0 is the chemical potential in the noninteractin
~ideal gas! limit. It is this effective value that features in th
results that follows.

B. Method and results

In the course of the simulations, three systems size
volume V5(7.5s)3, V5(10s)3, and V5(12.5s)3 were
studied, corresponding to average particle numbersN'250,
N'600, andN'1200, respectively at the critical end poi
~whose location we discuss below!. Following equilibration,
runs comprising up to 63109 MCS @14# were performed and
the joint distributionpL( r̃ ,m̃, ũ) was sampled approximatel
every 104 MCS and accumulated in the form of a histogra
For eachL, simulations were carried out at several~typically
five! temperatures along the liquid-gas coexistence curve

In order to locate the liquid-gas coexistence curve,
finite-size form of the density distributionpL( r̃ ) was stud-
ied. Precisely at coexistence,pL( r̃ ) is ~to within corrections
exponentially small inL) double peaked with equal weigh
in both peaks@15#. For a given simulation temperature, th
‘‘equal weight’’ criterion can be used to determine the coe
istence chemical potential to high accuracy. Close to
liquid-gas critical point, i.e., whenT&Tc

lg , this task is
straightforward; one simple tunes the chemical potentia
constantT until the measured form ofpL( r̃ ) is double
peaked. By contrast, however, in the strongly first-order
gime (T!Tc

lg), this approach cannot be used to obtain

coexistence form ofpL( r̃ ) due to the large free-energy ba
rier separating the coexisting phases. This barrier lead
metastability effects and prohibitively long correlation time
To circumvent this difficulty one must employ advanc
sampling schemes. One such scheme is the multicano
preweighting method@16#, which encourages the simulatio
e
e
o
-
i-
or

t

nd

-

s

of

.

e

-
e

t

-
e

to
.

cal

to sample the interfacial configurations of intrinsically lo
probability. This is achieved by incorporating a suitably ch
sen weight function in the Monte Carlo update probabilitie
The weights are subsequently ‘‘folded out’’ from th
sampled distribution to yield the correct Boltzmann distr
uted quantities. Use of this method permits the direct m
surement of the order-parameter probability distribution
first-order phase transitions, even when the distribution sp
many decades of probability.

To fully capitalize on the data gathered in the simulatio
the histogram reweighting technique@18# was employed.
This technique rests on the observation that histograms
cumulated at one set of model parameters can be reweig
to yield estimates of histograms appropriate to another se
not-too-distant parameters. Results from individual simu
tion runs at different parameters can also be combined
systematic fashion to provide information over larger regio
of the phase diagram. When used in tandem with multi
nonical preweighting, the histogram reweighting techniq
constitutes a powerful tool for mapping the coexisten
curve properties of continuum fluid models@17#.

Using the multicanonical preweighting technique, simu
tions of the liquid-gas coexistence curve of the binary flu
were performed. To begin with, the region near the liqu
gas critical point was studied since there the free-energy
rier between the coexisting phases is small and no prewei
ing function is need. Thereafter, the temperature was redu
in a stepwise fashion and the coexistence form ofpL( r̃ ) was
collected. For each successively lower temperature stud
histogram reweighting was used to obtain a suitable p
weighting function by extrapolating from the coexisten
histograms previously obtained at higher temperatures. F
ther details concerning this strategy have been given e
where @17#. Figure 2~a! shows the resulting coexistenc
forms ofpL( r̃ ) for the system of sizeL510s, at a selection
of temperatures in the range 0.9T̃C

lg, T̃, T̃c
lg . Also shown in

Fig. 2~b! is the same data expressed on a logarithmic sc
The corresponding estimates for the coexistence chem
potential and the coexistence diameter are plotted in Fig
and 4, respectively. The gas and liquid densities required
the diameter calculation were obtained as the average de
ties of the respective peaks ofpL( r̃ ). It is interesting to note
from Fig. 2~b! that for the lowest temperature studie
(T'0.9Tc), the ratio of minimum to maximum in the distri
bution is approximately 1012. A free-energy barrier of this
magnitude would, of course, represent an insurmountable
stacle to phase-space evolution were it not for the use
multicanonical preweighting.

It is also instructive to examine the coexistence behav
of the number difference order-parameter distributi
pL(m), for temperatures above and belowTe , as shown in
Fig. 5. Well belowTe , this distribution is three peaked, wit
one narrow peak centered onm̃50 and two broader peak
centered on positive and negative values ofm̃. The peak at
m̃50 corresponds to the disordered gas phase, while
degenerate peaks at positive and negative values ofm repre-
sent the orderedA-rich and B-rich liquid phases, respec
tively. As one approaches the critical end point, however,
liquid peaks become broader and overlap with the gas ph
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6628 55NIGEL B. WILDING
peak, ultimately leaving just one single peak atm̃50 for
T.Te .

To determine the locus of thel line and the critical end
point in which it formally terminates, finite-size scalin
~FSS! methods were employed. On thel line, criticality is
signaled by the asymptotic scale invariance ofpL(m̃). A use-
ful dimensionless measure of the form of this distribution
its fourth-order cumulant ratioUL5123^m̃4&/^m̃2&2 @19#. If
one plotsUL( T̃) for a given constantm̃, one expects the
curves for eachL to intersect at the critical demixing tem
perature. For binary fluids with short-ranged interactions,
critical behavior on thel line and the critical end point@20#
is expected to be Ising-like. One thus expects that asymp
cally ~for sufficiently largeL) there will be a unique crossin
point at a universal valueUL* . Ising model simulations@21#
give the estimateUL

!50.470(3).

We have measuredUL( T̃) for several value of the chemi
cal potentialm̃, thus enabling an estimate of the locus of t
l line. For each chosen value ofm̃, an initial rough estimate
of the critical temperature was obtained from a number

FIG. 2. ~a! Estimates of the coexistence density distributions
the L510s system size, for a range of subcritical temperatur
obtained as described in the text. The lines are merely guides to
eye. Statistical errors do not exceed the symbol sizes.~b! Same data
expressed on a logarithmic scale.
e

ti-

f

short simulations, in which the form ofpL(m̃) was observed
visually. Longer runs at this temperature were then carr
out for each system size in order to facilitate a more prec
determination ofT̃c . A representative plot ofUL as a func-
tion of T̃ andL is shown in Fig. 6 for the casem̃522.95.
Each of the curves shown represent the histogram extrap
tion of data obtained from a single simulation at the tempe
ture T̃51.005. Evidently there is no unique cumulant inte
section point for the three system sizes; rather the cros
point for theL57.5s and L510s system sizes occurs a
larger T̃ and smaller UL than for the L510s and
L512.5s system sizes. It is reasonable to assume, howe
that for sufficiently largeL, the cumulant intersection poin
would converge on the universal valueUL*50.470(3), but
that for the system sizes studied here this limit is not attai
due to corrections to finite-size scaling and~to a lesser ex-
tent! statistical error. In view of this, we adopt as our es

r
,
he

FIG. 3. Temperature dependence of the coexistence chem

potentialm̃ obtained from the histogram reweighting of the dist
butions shown in Fig. 2. Statistical errors do not exceed the sym
sizes.

FIG. 4. Temperature dependence of the coexistence curve d

eter r̃ d5( r̃ g1 r̃ l)/2, as obtained from histogram reweighting
the distributions shown in Fig. 2. Statistical errors do not exceed
symbol sizes.
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mate ofT̃c(m̃) that temperature at which the cumulant inte
section occurs for the two largest system sizes.

The critical end point was estimated in a similar mann
by studying the cumulant ratioUL for pL(m̃) as a function of
T̃ andL along theliquid branch of the coexistence curve.
principle, the form ofpL(m̃) corresponding to the liquid
phase can be extracted from the joint coexistence distribu
pL( r̃ ,m̃, ũ) since this embodies contributions from bo
phases. Assuming there is a clear distinction between the
and liquid phases~i.e., whenT!Tc

lg), one can isolate the
liquid branch component simply by disregarding all tho
histogram entries havingr̃ , r̃ d . However, it turns out to be
difficult to obtain sufficient statistics forpL(m̃) in this way.
This is because the preweighted simulation uniform
samplesall densities between the gas and liquid phas
When the gas and liquid densities are well separated,
simulation spends only a relatively small fraction of the tim
sampling liquidlike configurations and accordingly the sta
tical quality of the histogram forpL(m̃) is low. To circum-
vent this problem, it is expedient to perform a simulation th
samplesonly the liquid phase while neverthless remaining
coexistence. This is achievable by settingT̃ and m̃ to their
coexistence values and performing a simulationwithoutpre-
weighting the density distribution. If a starting configuratio
having a liquidlike density is chosen, the simulation will th
remain in the liquid phase by virtue of the large free-ene
barrier separating it from the gas phase. The results of im
menting this procedure are shown in Fig. 7, in whichUL is
plotted as a function of temperature along the liquid bran
of the coexistence curve in the neighborhood of the criti
end point. The curves exhibit an intersection
T̃e50.958(2), with a cumulant valueUL50.47 for the two
largest system sizes andUL50.455 for the smallest two sys
tem sizes. The associated estimate of the critical end p
chemical potential and density arem̃e523.017(3),
r̃ e50.587(5).
In the interests of completeness we have also obtained

location of the liquid-gas critical point. This was achiev

FIG. 5. Estimates of the number difference order-parameter

tribution pL(m̃) for the L510s system size at three temperatur
spanningTe .
r
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via a FSS study of the densitylike ordering operator. Deta
of the approach used have been extensively described
where@22,17# and so will not be repeated here. We mere
quote the results: T̃c

lg51.024(2),r̃ c
lg50.327(2), and

m̃c
lg522.767(4).
In Fig. 8 we present the estimated phase diagram of

system. Plotted are the coexistence densities for the liq
and gas branches, the position of the liquid-gas critical po
the locus of thel line, and the position of the critical en
point. One observes that close to the liquid-gas critical po
strong finite-size effects occur in the peak densities
pL( r̃ ). These have also been observed and discussed in
context of a previous study of the pure LJ fluid@17#. More
striking, however, is the appearance of a pronounced ‘‘kin
in the liquid branch density close to the critical end poi
This is a consequence of the singular behavior on the crit
line. As one would expect, the gas branch displays no s
kink due to the analyticity of Gg(m,T) at Te .

s- FIG. 6. Measured cumulant ratioUL( T̃) for the three system
sizes studied. The lines are the results of histogram reweightin

single simulations performed atT̃51.005,m̃522.95.

FIG. 7. Cumulant ratioUL for the distributionpL(m̃), obtained
according to the procedure described in the text. The lines are
results of histogram reweighting of liquid-phase simulations p
formed at liquid-gas coexistence.
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To probe more closely the behavior of the coexisten
density, we plot in Fig. 9~a! the diameter derivative

2d r̃ d(T)/dT̃, for the three system sizes studied. The d
exhibit a clear peak close toTe , which grows with increas-
ing system size. Very similar behavior is also observed in

curvature of the spectator phase boundary2d2m̃s /dT̃
2; see

Fig. 9~b!. These peaks constitute, we believe, the finite-s
rounded forms of the divergences@Eqs.~2.19! and~2.8!#. On
the basis of finite-size scaling theory@19#, the peaks are ex
pected to grow in height likeLa/n, with n the correlation
length exponent. Unfortunately, it is not generally feasible
extract estimates ofa/n in this way~even for simulations of
lattice Ising models! because to do so requires the ability
measure the analytic background, for which the present
tem sizes are much too small. Nevertheless, the corres
dence of the peak position with the independently estima

value of T̃e , as well as the growth of the peak with increa
ing L, constitutes strong evidence supporting the existenc
the predicted singularities.

IV. DISCUSSION

In summary, we have employed grand canonical Mo
Carlo simulations in conjunction with multicanonical pr
weighting and histogram reweighting to study the first-ord
phase boundary near the critical end point of a continu
binary fluid model. The results provide clear evidence for
existence of singularities in the phase boundary chem
potential and the coexistence curve diameter. They thus
stitute strong corroboration of the scaling arguments
whose basis the singularities are predicted.

Although no experimental observations of singularities
critical end points have yet been reported, we believe
given an appropriately chosen system their presence sh
be relatively easy to detect. In this respect, a binary fl
model might be a good candidate system for study sin
generally speaking, rather precise liquid-gas coexiste

FIG. 8. Average peak densities corresponding to the coexiste

form of pL( r̃ ) for the three systems sizes studied, plotted a
function of temperature. Also shown is the estimated locus of
l line ~filled circles! and the liquid-gas critical point~cross!. Sta-
tistical errors do not exceed the symbol sizes.
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curve data can be obtained. In this case the role of the che
cal potential in Eq.~2.6! is replaced by the pressure, b
otherwise the form of the singularity remains unaltered.
course, in a real system, the lack of finite-size round
should render the singularities more conspicuous than
simulation. Moreover, since real binary fluids do not gen
ally possess a special symmetry between the two fluid c
ponents, the chemical potential and temperature featur
the scaling fieldĥ, changing theutu12a diameter singularity
into a much strongerutub singularity ~see Sec. II!. In future
work we also intend to study the consequences of this s
metry breaking via simulations of an asymmetrical bina
fluid model.
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FIG. 9. ~a! Numerical temperature derivative of the measur

coexistence diameter2drd /dT̃ in the vicinity of the critical end
point temperature.~b! Measured curvature of the phase bounda

2d2m̃s /dT̃
2 in the vicinity of the critical end point temperature. I

both cases data are shown for the three system sizes studied.
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