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Critical end point behavior in a binary fluid mixture
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We consider the liquid-gas phase boundary in a binary fluid mixture near its critical end point. Using general
scaling arguments, we show that the diameter of the liquid-gas coexistence curve exhibits singular behavior as
the critical end point is approached. This prediction is tested by means of extensive Monte Carlo simulations
of a symmetrical Lennard-Jones binary mixture within the grand canonical ensemble. The simulation results
show clear evidence for the proposed singularity, as well as confirming a previously predicted singularity in the
coexistence chemical potentid. E. Fisher and P. J. Upton, Phys. Rev. Lé%, 2402(1990]. The results
suggest that the observed singularities, particularly that in the coexistence diameter, should also be detectable
experimentally[S1063-651X97)04706-3

PACS numbgs): 64.70.Ja, 64.70.Fx, 64.60.Fr, 05.70.Jk

[. INTRODUCTION Interest in critical end points has recently been aroused
following theoretical work by Fisher and co-workég. On

A critical end point occurs when a line of second-orderthe basis of phenomenological scaling and thermodynamic
phase transitions intersects and is truncated by a first-ord@rguments, these authors argued that the nonanalytic behav-
phase boundary, beyond which a newancritical phase is i0r at the critical end point engenders a free-energy-like sin-
formed. Critical end points are common features in the phas@ularity in the first-order (spectator phase boundary
diagrams of a many multicomponent systems such as binar«(T). The nature of this singularity, specifically its ampli-
fluid mixtures, binary alloys, and liquid crystals. They a|sot_ude ratlo','was rela’ged to the l_mlversal fea_tures of j[he critical
occur under certain circumstances in pure systems havirﬁ;e' Additionally, different universal amplitude ratios were

additional internal degrees of freedom such as superfluids oposed for the noncritical surface tensions near the critical
well as certain ferromagnets and ferroelectrics. end point[3]. These predictions were subsequently corrobo-

Perhaps the simplest system to exhibit a critical end poin ated by analytical calculations on extended spherical models
. . A i . ,5], as well as a Landau theory study of a model ferroelec-
is a binary fluid mixture. Here the phase diagram is spanne

o i . ric [6]. To date, however, experimental results pertaining to
by three thermodynamic fields: the temperatiifea chemi- critical end points are scarce and those that do exist have

cal potentialu, and an ordering fielth coupling to the con-  ¢,0,564 on the interfacial properties and the surface ampli-
centration difference of the two particle species. A number o} 4o ratios[7,8]. To the best of our knowledge there have
different phase diagram topologies are possible for binaryeen no reported attempts to study the bulk coexistence

fluids depending on the microscopic interaction parametersyroperties and the matter of the predicted singularity in the
as systematically classified by Konynenburg and Sibit

The particular case on which we shall focus in this work is of
type Il in their classification scheme and is depicted sche-
matically in Fig. 1 for the subspade=0. Within this sub-
space, two fluid phasgs and vy, each rich in one of the two
particle species, coexist with one another. By tuningnd

., however, one finds a critical line T.(w«), where both
phases merge into a single disordefegdphase. The point at
which the N line T.(u) intersects the first-order line of
liquid-gas transitionsu,(T) marks the critical end point
(Te,me). FOrT<T,, the phase boundapy,(T) constitutes

a triple line along which the fluid phases and y coexist
with the gas phase, while for T>T,, u,(T) defines the
region where the8y and « phases coexist. Precisely at the
critical end point the critical mixture of3 and y phases
coexists with the gas phase. Since the gas phase does not
participate in the criticality, it is commonly referred to as a
“spectator” phase.
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FIG. 1. Schematic phase diagram of a binary fluid in the coex-

istence surfacen=0. The broken lineu,(T) is the first-order

liquid-gas phase boundary between the fluid and gas phaSée

*Present address: Department of Physics and Astronomy, Theill line is the critical line of second-order transitiofig(u) sepa-
University of Edinburgh, West Mains Road, Edinburgh EH9 3JZ, rating the demixed phaségsty from the mixed phasgvy. The two
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lines intersect at the critical end point.
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spectator phase boundary. There is a similar dearth of simu- (T,u,h)=t+ah+a,Apu, (2.4a
lation work on the subject, and we know of no detailed nu-
merical studies of critical end point behavior, in either lattice A(T, 1,h) =h+bt+byA (2.40

or continuum models.

In this paper we address the issue of the nature of th@here thea; andb; are nonuniversal “field mixing” param-
spectator phase boundary near a critical end point by meangers[10,11], some of which have geometrical significance
of computer simulation of a continuum binary fluid model \y;ithin the phase diagram. In particular, since 0 specifies
[9]. Our paper is organized as follows. In Sec. Il we briefly ¢ (w), one has at the critical end point
review the principal features of the scaling arguments of ©*'

Fisher and co-workers and show that in addition to the pre- dT,
viously predicted singularity inu,(T), they also imply sin- a,=— e (2.5
gular behavior in thaliameterof the liquid-gas coexistence K

curve at the critical end point. In Sec. Ill we detail extensive
Monte Carlo simulations of a symmetricdlennard-Jones
binary fluid mixture. We map the liquid-vapor coexistence
curve and the\ line of the model by applying finite-size . : ; .

scaling analyses to the probability distribution functions of'snoléiﬁ’ t%oa:nd(fjr.)I‘\;re]:gﬁlll?egldlis?é(]Z.Z), invoking Eq.(2.1), and
appropriate observables. The results provide remarkably gforu y
clear signatures of divergences in the appropriate tempera- 1

ture derivatives of the coexistence diameter and the phase,ug(T)—,uo(T)~—Xi|t|2‘“—Yi|t|B|h|——Zi|t|‘7h2,
boundary chemical potential, thus corroborating the theoret- 2

ical predictions. Finally, in Sec. IV we detail our conclu- (2.6
sions.

representing the gradient of the line at the critical end
point.
The critical free energyEqg. (2.3)] can also be expanded

valid asT—T.*, h—0. HereX.,Y. ,Z. are critical am-
plitudes andea, 8,y are the usual critical exponents charac-

Il. THE LIQUID-GAS COEXISTENCE CURVE terizing the A line. Corrections to scaling have been ne-
A. The coexistence chemical potential glected and the background term has the expansion
In this subsection we briefly review the scaling arguments wolT)=petgit+goh+-- - 2.7

of Fisher and Barbosg2] concerning the singularity in the
spectator phase boundary at the critical end point. In so daf we restrict out attention to the coexistence surface0
ing, we shall continue to employ the language of the binaryand assumer>0, Eq. (2.6) implies a specific heat-like di-

fluid mixture, although the arguments themselves are not regergence in theurvatureof the spectator phase boundary
stricted to this case.

Within the grand canonical framework, liquid-gas coex- d?u, . -
istence is prescribed by the equality of the Gibbs free energy = =Xt 7, 2.9
G= —kgTInZ in the respective phases, i.e.,
Gy(io(T),T,N)=Gy(,(T),T,h). (2.1 v;?ere the amplitude rati®, /X_ is expected to be universal
Since the gas spectator phase is necessarily noncritical, its
free energy is analytic at the end point and can thus be ex- B. The coexistence diameter
panded as

Let us now examine the behavior of the coexistence par-
ticle number density in the vicinity of the critical end point.
Specifically, we shall focus on the coexistence diameter in

the regionh=0, defined by

Gy, T,n)=Ge+GIApu+Got+GSh+GIAu?+ - - -,
(2.2

wheret=T—T, andA u=pu— uo, with A u<0. 1
The liquid phase, on the other hand, is critical and there- pa(T) == pg(o(T)+ p (o (TH]. 29
. . . 2 g o o
fore contains both an analytibackgroungl and asingular

contribution to the free ener
9y The particle density is obtainable from the Gibbs potential as

Gi(p, T,h)=Go(u, T,n)— | 7127 %G (R[] %), (2.3

1/0G

=——- — 2.1
where G, is the analytic part, whileg=(y) is a universal P V( 3M>T,h (210
scaling function that is a function of the relevant scaling
fields 7(T,u,h)=T—T() andA(T,x,h)~h that measure S that
deviations from thé\ line. G*(y) must satisfy matching con- 146G, (11.(T).T)
ditions asy— +, and the quantitiesr andA are, respec- po(T)=— _( L) (2.11)
tively, the specific heat and gap exponents associated with \ I T

the\ line.
To linear order the scaling fields may be expanded as with



6626 NIGEL B. WILDING 55

G, (1 o(T), T =[Gg(1to(T), T)+ Gy (o (T), T)]/2. sumed to be contained in volumé=L* with periodic
(2.12  boundary conditions. The grand canonical partition function
takes the form
Appealing to Egs.(2.2 and (2.3) and noting that

—9_ H H - © o) N )
B=2—a—A then yields, for the singular behavior Z2-S S ] [J’ dFi]e[MN_q)({r})‘*'h(Nl_NZ)],
polT) = U | (T (TP Ve (T o (TH] NiZ0 Np=0 153

3.1
+ (terms analytic afl¢) (2.13

where® =X, _;¢(rj;) is the total configurational energy,

as 7—0. Here the nonuniversal critical amplitudes take theis the chemical potential, arlal is the ordering fieldall in

form units ofkgT). N=N;+ N, is the total number of particles of
, types 1 and 2.
U.=b,G.(0), (2.149 The interaction potential between particlesnd j was

assigned the familiar Lennard-Jongs) form
Vi=a,(2—a)G.(0), (2.14h
)= )12 )6
with G'.(2)=dG. /dz. d’(r”) 4€mn[(0'/r|]) (O'/r”) 1, (3.2

Now, along the liquid-gas coexistence curve, one has\’/\/hereo is a parameter that serves to set the interaction
from Eq. (2.43,

range, whilee,,, measures the well depth for interactions
_ _ between particles of type®m andn. In common with most
7T (M=t 2z (T) = e (219 other simulations of Lennard-Jones systems, the potential
Recalling Eqs(2.6) and (2.7) (and settingh=0), one then Was truncated at a cutoff rading= 2.50 (irrespective of the
finds species of the interacting particeand left unshifted. To
simplify the task of locating interacting particles, a cell de-
| 7(T, o (T)|=[t[1+a,9,+O([t|*"9)]. (2.16 composition scheme was employed in which the total system
volume was partitioned into cubic cells of sidg. Interac-

Thus, to leading order one can write tions emanating from a specific particle then extend only as
far as the 26 neighboring cells.
pd(T)=Ui|t|5+\~/i|t|1*“+(terms analytic afl ), An lIsing-like symmetry was imposed on the model by

(2.17 choosing €,,=€,,=€>0. This choice endows the system
with energetic invariance unddr— —h, thereby ensuring
where U.=(1+a,g;)?U, and V.=(1+a,g;)'"*V.. that the critical end point lies in the surfabe=0. We shall
We note that this expression is of the same form as the siraccordingly restrict our attention henceforth to this regime.
gularity in the overall density on the line [10]. An additional paramete¢;,= § was used to control interac-

A special case of Eq2.17), relevant to the present work, tions between unlike particles. The phase diagram of the
is that for a symmetrical fluid having energetic invariancemodel in the surfacé=0 is then uniquely parametrized by
underh— —h. In this case one finds on symmetry groundsthe ratiod/e. Physically, the role of this ratio in determining
that the field mixing parametets,=b,=0 and hence from the form of the phase diagram can be understood as follows.
Eqg. (2.1439 For 6/e<1, the energy penalty associated with contacts be-

tween unlike particles is small and hence there is little incen-
pa(T)=V.|t|*"*+ (terms analytic a,), (2.18 tive for phase separation unless the temperature is very low
and the density very high. One therefore expects a phase
which implies a divergent diameter derivative diagram having a critical end point temperatiie<T!? and
densityp>p'9, whereT! andp!? are the liquid-gas critical
dpy(T) temperature and density, respectively. Choosing a smaller
daT value of 6/e, however, moves the end point towards the
liquid-gas critical point, into which it merges for sufficiently
whereV. =(1—a)V. . Since this divergence occurs in the small 8/, forming atricritical point [13]. Empirically, we
first derivative of the observablpy(T), it is in principle find that for 6/e=0.6, there is a tricritical point, while for
more readily visible than that in the second derivative ofs/e=0.75 there is a critical end point having~2.3p'9.
no(T); cf. Eq.(2.8). As we shall now show, however, clear The location of the critical end point for larger values of
signatures of both divergences are readily demonstrable b§/e could not be reliably determined since its density is

~V. |t~ (2.19

Monte Carlo simulation. above that at which the grand canonical particle insertion
algorithm (see below is operable. In this work, all simula-
11l. MONTE CARLO SIMULATIONS tions were performed withS/e=0.7, which yields critical

end point parameter§,~0.9319, p,~1.75'9. This tem-
perature is sufficiently small compared Tég that critical

The simulations described here were performed for alensity fluctuations do not obscure the end point behavior,
symmetrical binary fluid model using a Metropolis algorithm while at the same timg, is not so large as to unduely hinder
within the grand canonical ensemH{l&2]. The fluid is as- particle insertions.

A. Model and algorithmic considerations
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In order to sample ergodically the phase space of théo sample the interfacial configurations of intrinsically low
model, two sorts of Monte Carlo action are necessary. Th@robability. This is achieved by incorporating a suitably cho-
first is a particle transfer step in which one attempts either tgen weight function in the Monte Carlo update probabilities.
insert a particle at a randomly chosen position or, alternaThe weights are subsequently “folded out” from the
tively, to delete a randomly chosen existing particle. Candisampled distribution to yield the correct Boltzmann distrib-
date particles for insertion are assigned a species type (1 @fed quantities. Use of this method permits the direct mea-
2) with equal probability. The second sort of action is ansyrement of the order-parameter probability distribution at

identity swap, in which one chooses an existing particle afijrst-order phase transitions, even when the distribution spans
random and attempts to change its identity—(2 or many decades of probability.

2—1). Combined use of these operations samples the grand 14 fy]jy capitalize on the data gathered in the simulations,
canonical ensemble in which the particle density N/V, — he histogram reweighting techniquas] was employed.
energy densityu=®/V, and number difference density s technique rests on the observation that histograms ac-
m_|r$'\;:;o'\:él{a{r:/cslIv\filtuth(l:Jg;Sention we shall emplo Olimen_cumulated at one set of model parameters can be reweighted
sionless units to express our data,' ploy to yield estimates of histograms appropriate to another set of
' not-too-distant parameters. Results from individual simula-
tion runs at different parameters can also be combined in a
systematic fashion to provide information over larger regions
of the phase diagram. When used in tandem with multica-
nonical preweighting, the histogram reweighting technique

We also note for future reference that our algorithm utilizescOnStitutes a powerful tool for mapping the coexistence

not the true chemical potential, but an effective chemical curve properties of continuum fluid modg[s7].

L~ . . o Using the multicanonical preweighting technique, simula-
potential to which the true chemical potential is related by (iong of the liquid-gas coexistence curve of the binary fluid

p=poc°, mM=mo>, u=uo?, (3.3

T=kgT/e. (3.9

~ 3 were performed. To begin with, the region near the liquid-
= pt o= In(N/L®), (3.9 gas critical point was studied since there the free-energy bar-
rier between the coexisting phases is small and no preweight-
ing function is need. Thereafter, the temperature was reduced

in a stepwise fashion and the coexistence formdf) was
collected. For each successively lower temperature studied,
histogram reweighting was used to obtain a suitable pre-
weighting function by extrapolating from the coexistence
In the course of the simulations, three systems sizes dfistograms previously obtained at higher temperatures. Fur-
volume V=(7.50)3, V=(100)3, and V=(12.50)° were ther details concerning this strategy have been given else-
studied, corresponding to average particle numbee250, where [17]. Figure 2a) shows the resulting coexistence
N~600, andN~ 1200, respectively at the critical end point forms ofp, () for the system of size = 100, at a selection
(whose location we discuss belawrollowing equilibration, temperatures in the range T@<T<T¢. Also shown in
runs comprising up to ?;1991\/'05[14] were performed and i () is the same data expressed on a logarithmic scale.
the joint distributionp, (p,m,u) was sampled approximately The corresponding estimates for the coexistence chemical
every 18 MCS and accumulated in the form of a histogram. potential and the coexistence diameter are plotted in Figs. 3
For eachL, simulations were carried out at sevefigpically  and 4, respectively. The gas and liquid densities required for
five) temperatures along the liquid-gas coexistence curve. the diameter calculation were obtained as the average densi-

In order to locate the liquid-gas coexistence curve, thgies of the respective peaks pf(p). It is interesting to note
finite-size form of the density distributiop, (p) was stud- from Fig. 2Ab) that for the lowest temperature studied
ied. Precisely at coexistengg, (p) is (to within corrections  (T~0.9T;), the ratio of minimum to maximum in the distri-
exponentially small in_) double peaked with equal weight bution is approximately 18. A free-energy barrier of this
in both peakg15]. For a given simulation temperature, this magnitude would, of course, represent an insurmountable ob-
“equal weight” criterion can be used to determine the coex-stacle to phase-space evolution were it not for the use of

istence chemical potential to high accuracy. Close to thénulticanonical preweighting.

liquid-gas critical point, i.e., whenTsT'cg, this task is It is also instructive to examine the coexistence behavior
straightforward; one simple tunes the chemical potential a@f the number difference order-parameter distribution
constantT until the measured form opy(p) is double PL(m), for temperatures above and beldy, as shown in

peaked. By contrast, however, in the strongly first-order reFig. 5. Well belowTe, this dislribution is three peaked, with
gime (T<TW), this approach cannot be used to obtain theOn€ narrow peak centered an=0 and two broader peaks
coexistence form op, (p) due to the large free-energy bar- Sentered on positive and negative valuesrofThe peak at

rier separating the coexisting phases. This barrier leads tm=0 corresponds to the disordered gas phase, while the
metastability effects and prohibitively long correlation times.degenerate peaks at positive and negative values refpre-

To circumvent this difficulty one must employ advancedsent the ordered\-rich and B-rich liquid phases, respec-
sampling schemes. One such scheme is the multicanonictively. As one approaches the critical end point, however, the
preweighting methodl16], which encourages the simulation liquid peaks become broader and overlap with the gas phase

where ug is the chemical potential in the noninteracting
(ideal gas limit. It is this effective value that features in the
results that follows.

B. Method and results
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10 FIG. 3. Temperature dependence of the coexistence chemical
potential w obtained from the histogram reweighting of the distri-
butions shown in Fig. 2. Statistical errors do not exceed the symbol

5 sizes.

10 ] short simulations, in which the form ¢f_ (m) was observed
= visually. Longer runs at this temperature were then carried
E out for each system size in order to facilitate a more precise

5 determination ofT .. A representative plot of), as a func-

10 l tion of T andL is shown in Fig. 6 for the case= —2.95.
Each of the curves shown represent the histogram extrapola-
tion of data obtained from a single simulation at the tempera-

o . . ture T=1.005. Evidently there is no unique cumulant inter-

0.0 02 0.4 0.6 0.8 section point for the three system sizes; rather the crossing
' ' ~ ' ' point for theL=7.50 and L=100 system sizes occurs at

larger T and smaller U, than for the L=10s and
L=12.5 system sizes. It is reasonable to assume, however,

FIG. 2. (a) Estimates of the coexistence density distributions for > ) ) .
the L=100 system size, for a range of subcritical temperatures,that for sufficiently largel, the cumulant intersection point

obtained as described in the text. The lines are merely guides to t¥ould converge on the universal valugf =0.47Q3), but

eye. Statistical errors do not exceed the symbol sitgSame data that for the system sizes studied here this limit is not attained

expressed on a logarithmic scale. due to corrections to finite-size scaling atid a lesser ex-
teny statistical error. In view of this, we adopt as our esti-

peak, ultimately leaving just one single peakrat0 for

T>T,. 0.38 . . .
To determine the locus of the line and the critical end

point in which it formally terminates, finite-size scaling 0.37 + M

(FSS methods were employed. On theline, criticality is Oooo

signaled by the asymptotic scale invariancepfm). A use- 0.36 | Ooo

ful dimensionless measure of the form of this distribution is °

its fourth-order cumulant ratit), = 1—3(m*)/(m?)2 [19]. If ' 035 | , .

one plotsU, (T) for a given constanjz, one expects the OOO

curves for each to intersect at the critical demixing tem- 0.34 oooo ]

perature. For binary fluids with short-ranged interactions, the Po,,

critical behavior on the: line and the critical end poif0] 033 | Oo%o%%

is expected to be Ising-like. One thus expects that asymptoti- e,

cally (for sufficiently largel.) there will be a unique crossing 30 . . .

point at a universal valuel} . Ising model simulation§21] 0.88 0.92 0.96 1.00 1.04

give the estimatéJ=0.47Q3). T

We have measured, (T) for several value of the chemi- FIG. 4. Temperature dependence of the coexistence curve diam-

cal potentialy, thus enabling an estimate of the locus of theeter’ﬁd:(’59+ﬁ|)/2, as obtained from histogram reweighting of

X line. For each chosen value pf an initial rough estimate the distributions shown in Fig. 2. Statistical errors do not exceed the
of the critical temperature was obtained from a number okymbol sizes.
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FIG. 6. Measured cumulant ratid, (T) for the three system

tribution p, (m) for the L=10c system size at three temperatures sizes studied. The lines are the results of histogram reweighting of

spanningT, .

mate of () that temperature at which the cumulant inter-
section occurs for the two largest system sizes.

The critical end point was estimated in a similar manner .
by studying the cumulant ratid, for p, (m) as a function of ,Cl ote

T andL along theliquid branch of the coexistence curve. In '“C

principle, the form ofp, (m) corresponding to the liquid
phase can be extracted from the joint coexistence distributiofy

p.(p,m,u) smce this embodies contributions from both

and liquid phasesi.e., whenT<T9) one can isolate the
liquid branch component simply by disregarding all those

histogram entries having<p4. However, it turns out to be
difficult to obtain sufficient statistics fop, (m) in this way.

the
=—2.7674).
In Fig. 8 we present the estimated phase diagram of our
system. Plotted are the coexistence densities for the liquid
Hnd gas branches, the position of the liquid-gas critical point,
the locus of the\ line, and the position of the critical end

?)%lnt One observes that close to the liquid-gas critical point,
strong finite-size effects occur in the peak densities of

pL('ﬁ). These have also been observed and discussed in the
context of a previous study of the pure LJ flJitl7]. More
striking, however, is the appearance of a pronounced “kink”

single simulations performed @t=1.005, = — 2.95.

via a FSS study of the densitylike ordering operator. Details
of the approach used have been extensively described else-
where[22,17] and so will not be repeated here. We merely

results: T9=1.0242),p.9=0.3272),

and

This is because the preweighted simulation uniformlyin the liquid branch density close to the critical end point.
samplesall densities between the gas and liquid phasesThis is a consequence of the singular behavior on the critical
When the gas and liquid densities are well separated, thgne. As one would expect, the gas branch displays no such

simulation spends only a relatively small fraction of the timekink due
sampling liquidlike configurations and accordingly the statis-

tical quality of the histogram fop, (m) is low. To circum-
vent this problem, it is expedient to perform a simulation that
sampleonly the liquid phase while neverthless remaining at

coexistence. This is achievable by settifigand u to their
coexistence values and performing a simulatigthout pre-
weighting the density distribution. If a starting configuration
having a liquidlike density is chosen, the simulation will then
remain in the liquid phase by virtue of the large free-energy =
barrier separating it from the gas phase. The results of imple-
menting this procedure are shown in Fig. 7, in whigh is

plotted as a function of temperature along the liquid branch

of the coexistence curve in the neighborhood of the critical

0.525

0475

0.425

to the analyticity of G4(u,T) at Te.
AN — V=(7.50)
~. e V=(100)’
T~ - V=(12.56)"

end point. The curves exhibit an intersection at
T.=0.95§2), with a cumulant valudJ, =0.47 for the two 0.375 : : :
largest system sizes at] =0.455 for the smallest two sys- 0.956 0.957 0'?}58 0.959

tem sizes. The associated estimate of the critical end point
chemical potential and density argi.=—3.0173),
pe=0.5875).

0.960

FIG. 7. Cumulant ratidJ, for the distributionp, (m), obtained
according to the procedure described in the text. The lines are the

In the interests of completeness we have also obtained thesults of histogram reweighting of liquid-phase simulations per-
location of the liquid-gas critical point. This was achieved formed at liquid-gas coexistence.
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tistical errors do not exceed the symbol sizes. 30 | o a °V=(12.50) |
%00 k4
=)
To probe more closely the behavior of the coexistence % On.e°° s
density, we plot in Fig. @) the diameter derivative ?bzo 5 0e80% o° . ]
—dpy(T)/dT, for the three system sizes studied. The data ~§‘ : °2°no
exhibit a clear peak close t®,, which grows with increas- I %g° ° o
. K .. . . °gosou°no o
ing system size. Very similar behavior is also observed in the 10 b 0°5°.9
curvature of the spectator phase boundan?z, /dT2; see
Fig. 9b). These peaks constitute, we believe, the finite-size
rounded forms of the divergencgsgs.(2.19 and(2.8)]. On 0 , . \
the basis of finite-size scaling thediy9], the peaks are ex- 0.90 0.93 0.96 0.99 1.02
pected to grow in height like.“”, with v the correlation T
length exponent. Unfortunately, it is not generally feasible to
extract estimates af/ v in this way(even for simulations of FIG. 9. (a) Numerical temperature derivative of the measured

lattice Ising modelsbecause to do so requires the ability to coexistence diameter dpy/dT in the vicinity of the critical end
measure the analytic background, for which the present sygoint temperature(b) Measured curvature of the phase boundary
tem sizes are much too small. Nevertheless, the correspor-d2x,,/dT2 in the vicinity of the critical end point temperature. In
dence of the peak position with the independently estimatetoth cases data are shown for the three system sizes studied.

value of T¢, as well as the growth of the peak with increas- cyrve data can be obtained. In this case the role of the chemi-
ing L, constitutes strong evidence supporting the existence afal potential in Eq.(2.6) is replaced by the pressure, but

the predicted singularities. otherwise the form of the singularity remains unaltered. Of
course, in a real system, the lack of finite-size rounding
IV. DISCUSSION should render the singularities more conspicuous than in a

simulation. Moreover, since real binary fluids do not gener-
eaIIy possess a special symmetry between the two fluid com-
'ponents, the chemical potential and temperature feature in

In summary, we have employed grand canonical Mont
Carlo simulations in conjunction with multicanonical pre-
weighting and histogram reweighting to study the first-orde L e . 1o . .
phase boundary near the critical end point of a continuurﬂihe scallnghflelch, Char;gmg thlét.l diameter sm%ularlty
binary fluid model. The results provide clear evidence for thd"t0 @ much strongejt|” singularity (see Sec. )i In future

existence of singularities in the phase boundary chemical’O'k We also intend to study the consequences of this sym-

potential and the coexistence curve diameter. They thus cofu?gﬁlggee?kmg via simulations of an asymmetrical binary

stitute strong corroboration of the scaling arguments o
whose basis the singularities are predicted.

Although no experimental observations of singularities at
critical end points have yet been reported, we believe that The author thanks K. Binder and D. P. Landau for stimu-
given an appropriately chosen system their presence shouldting discussions and encouragement. Helpful correspon-
be relatively easy to detect. In this respect, a binary fluiddence with A. D. Bruce, M. E. Fisher, M. Krech, and M.
model might be a good candidate system for study sinceMiiller is also gratefully acknowledged. This work was sup-
generally speaking, rather precise liquid-gas coexistencported by BMBF Project No. 03N8008 C.

ACKNOWLEDGMENTS



55 CRITICAL END POINT BEHAVIOR IN A BINARY ... 6631

[1] P.H. van Konynenburg and R.L. Scott, Philos. Trans. R. Soc. appearance of one in this model is traceable to its special sym-

Ser. A298 495 (1980. metry. For a recent simulation study of tricritical behavior in a
[2] M.E. Fisher and P.J. Upton, Phys. Rev. Lé&, 2402(1990); symmetric continuum fluid model see N.B. Wilding and P.
M.E. Fisher and M.C. Barbosa, Phys. Rev.8, 11177 Nielaba, Phys. Rev. B3, 926 (1996.
(1992. [14] We define a Monte Carlo stepICS) to comprise a particle
[3] M.E. Fisher and P.J. Upton, Phys. Rev. Lé8, 3405(1990. transfer attemptinsertion or deletionand a particle identity
[4] M.C. Barbosa and M.E. Fisher, Phys. Rev.48, 10635 change(type 1—2 or 2—1) attempt.
(1991); M.C. Barbosajbid. 45, 5199(1992. [15] C. Borgs and R. KoteckyPhys. Rev. Lett68, 1734(1992.
[5] M.C. Barbosa, Physica A77, 153(199)). [16] B. Berg and T. Neuhaus, Phys. Rev. L&8, 9 (1992.
[6] E.L. de Santa Helena and M.C. Barbosa, Physic208 479 [17] N.B. Wilding, Phys. Rev. E52, 602(1995.
(1994; 219 408(1995. [18] A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. L&if.
[7] B.M. Law, Phys. Rev. Lett67, 1555(1991J). 2635(1988; 63, 1195(1989.
[8] D.S.P. Smith and B.M. Law, J. Chem. Phg8, 9836(1993. [19] See, e.g., K. Binder, inComputational Methods in Field
[9] A brief preliminary report of this work has been given else- Theory edited by H. Gausterer and C.B. Lani§pringer-
where: N.B. Wilding, Phys. Rev. Let¥8, 1488(1997). Verlag, Berlin, 1992, pp. 59-125.
[10] M.A. Anisimov, E.E. Gorodetskii, V.D. Kulikov, and J.V. [20] T.A.L. Ziman, D.J. Amit, G. Grinstein, and C. Jayaprakash,
Sengers, Phys. Rev. ¥, 1199(1995. Phys. Rev. B25, 319 (1982.
[11] J.J. Rehr and N.D. Mermin, Phys. Rev.8A472 (1973. [21] R. Hilfer and N.B. Wilding, J. Phys. &8, L281 (1995.
[12] M.P. Allen and D.J. Tildeslegomputer Simulation of Liquids [22] A.D. Bruce and N.B. Wilding, Phys. Rev. Le68, 193(1992;
(Oxford University Press, London, 1987 N.B. Wilding and A.D. Bruce, J. Phys. Condens. Matter

[13] In general, binary fluids do not exhibit a tricritical point. The 3087(1992.



